Note

Reaction of the D-ribose moiety of adenosine and AMP with periodate and 5,5-dimethylcyclohexane-1,3-dione (dimedone)

FRITZ HANSSKE AND FRIEDRICH CRAMER

Max-Planck-Institut für experimentelle Medizin, Abieilung Chemie, 34 Gottingen, Hermann-Rein-Straße 3 (Germany)

(Received July 18th, 1974, accepted for publication in revised form, November 25th, 1974)

The cis-glycol group of ribonucleosides and ribonucleotides can be oxidized specifically by periodate to form dialdehydes $(1 \rightarrow 2)$ which subsequently polymerise to oligo- or poly-ribo-oxynucleosides and -ribo-oxynucleotides¹

On investigating the reaction of the dialdehyde 2 (R = H), derived from adenosine, with dimedone, a single product was isolated, the combustion analysis of which was consistent with structure 4 (R = H). The mass spectrum of 4 (R = H) exhibits a molecular ion at m/e 527 and therefore provides further evidence for the presence of two dimedone residues. Furthermore, in the n m r spectrum of 4 (R = H), the two acidic protons (H-2'') of the dimedone residues could be identified by D_2O exchange. The splitting of the signals for the methyl and methylene protons of the

TABLE I ELECTROPHORESIS, CHROMATOGRAPHY, AND U V SPECTROSCOPY OF 2-4

Compound	Electrophoretic mobilitiesa		Tlc - R _E b	U v spectra	
	A	В	- K _F	$J_{\max}(nm)$	$\lambda_{ ext{shoulder}} (nm)^c$
$2 R = (HO)_2 PO$	0 37 (+)	10 (+)	0 85	258	
2 R = H	<u> </u>	0 28 (-)	0 74	258	
Dimedone	0 59 (+)	07 (+)	0 55	280	
$3 R = (HO)_2 PO$	0 28 (+)	_	0 60	265	286 (weak)
$4 R = (HO)_2 PO$	10 (+)		0 22	264 5	290
3 R = H	_	00	0 30	265	286 (weak)
4 R = H	0 27 (-)	0 24 (+)	0 15	264 5	290

^eA, Cellulose thin-layer plates (Merck, Darmstadt, GFR), 0 1M acetate buffer (pH 5 0), 600 V, 31→51 mamp, B, silica gel thin-layer plates (Woelm, Eschwege, GFR), 0 1M Sørensen citrate buffer (pH 6 5), 600 V, 29 mamp (apparatus from Desaga, Heidelberg, GFR) ^bSilica gel (as above), 0 25M LiCl ^c0 1M Phosphate buffer (pH 7 0)

NOTE 367

dimedone moieties may be based on interactions with the purine ring, and on the fact that C-3' and C-5' are additional asymmetric centers and that, therefore, stereo-isomers can be formed From these results, together with chromatography, electro-phoresis, and u v data (Table I), we suggest the structure 4 From u v and electro-phoresis data, 3 or structures generated from 3 by ring closure are proposed as intermediates

The reaction product of 2 $[R = (HO)_2PO]$, derived from adenosine monophosphate (AMP), and dimedone is probably 4 $[R = (HO)_2PO]$, since dephosphorylation by alkaline phosphatase yields 4 (R = H)

Glitz and Sigman² treated the dialdehyde 2, derived from AMP, as well as several periodate-oxidized RNA species, with [¹⁴C]-labelled dimedone under slightly different conditions. From the incorporation of radioactivity and u v data, they concluded that a 1 I stoichiometry of the dialdehyde to dimedone existed in these compounds.

1 R = H 2 R = H 1 R =
$$(HO)_2PO$$
 2 R = $(HO)_2PO$

3

4 R = H 4 R = (HO)₂PO 368 NOTE

EXPERIMENTAL

Adenosine, AMP, and dimedone were commercial products of analytical grade Alkaline phosphatase from E coli (E C 3 1 3 1) was a product of Boehringer, Mannheim N m r. spectra were measured at 24° on a Varian HA-100 spectrometer, using methyl sulphoxide- d_6 as solvent and tetramethylsilane as internal standard Mass spectra were obtained on a Varian-MAT CH-4 spectrometer I r spectra were measured in KBr pellets, using a Perkin-Elmer Infracord spectrometer Zeiss PMQ II and UNICAM SP 1800 spectrometers were used for measuring the u v spectra

Preparation and characterization of 6-amino-9-[3',5'-bis(5",5"-dimethylcyclohexane-1",3"-dione-2"-yl)-6'-hydrox) methyl-1',4'-dioxan-2'-yl]purine (4, R=H) — Adenosine (10 mmol) was treated with 10 mmol of NaIO₄ in 100 ml of water at 23° in the dark for 1 h Traces of periodate then were reduced with butane-2,3-diol A solution of dimedone (20 mmol) in 600 ml of water was filtered and added to the foregoing solution, and the mixture was stored at 23° overnight. The product was collected, recrystallized from aqueous methanol, and dried at 80° over P_2O_5 in vacuo to give 4 (4 5 g, 81%; R=H), mp 184 5° (Found C, 57 4, H, 6 56, N, 12 97 $C_{26}H_{33}N_5O_7$ H_2O calc. C, 57 3, H, 6 46, N, 12 83%)

On boiling a solution of 4 (R = H) in ethanol, the anhydrous compound was obtained, m p beginning at 190° (Found C, 59 02, H, 6 50, N, 13 45 $C_{26}H_{33}N_5O_7$ calc C, 59 1; H, 6 32, N, 13 29%)

At pH 3, 4 (R = H) has λ_{max} 260 nm (\$\varepsilon\$ 25,800), pH 7, λ_{max} 264 nm (\$\varepsilon\$ 24,500), shoulder at 290 nm, pH 10 5, λ_{max} 265 nm (\$\varepsilon\$ 26,500), shoulder at 290 nm, v_{max} 1715 (weak, ketone of a six-membered ring) and 1620 cm⁻¹ (strong, 1,3-diketone in the enolic form) Mass spectrum m/e 527 (6 5%) M⁺ -H₂O, 509 (21 5) 527 -H₂O, 491 (20) 509 -H₂O, 473 (9) 491 -H₂O, 136 (100) BH⁺, 135 (100) B⁺, 392 (13) 527 -B, 374 (95) 509 -B, 356 (93) 481 -B, 338 (92) 473 -B, 479 (53) 509 - CH₂O, 344 (73) 479 -B. N m r data δ 8 2 (s, 1 H, H-8), 8 18 (s, 1 H, H-2), 7 23 (s, 2 H, NH₂), 6 76 (s, 1 H, H-2'), 4 18 (d, J 4 5 Hz, after D₂O exchange s, 1 H, H-3'), 3 5 (s, 2 H, H-5',6'), 3 34 (s, 2 H, CH₂-6'), 1 03 (s) and 0 87 (d) (12 H, 4 Me-5"), 2 3 (m, 8 H, 4 CH₂-4",6"), 5 75 (d, J 4 5 Hz, after D₂O exchange s, 2 H, CH-acid-2") Sometimes, the sugar protons exhibited coupling constants of 1-2 Hz, but in most cases, no splitting of the signals could be detected

Synthesis of 6-amino-9-[3',5'-bis(5",5"-dimethylcyclohexane-1",3"-dione-2"-yl)-6'-phosphoryloxymethyl-1',4'-dioxan-2'-yl]purine [4, $R = (HO)_2PO$] and further preparations of 4 (R = H) were carried out in 10mm solution by treating 1 with 1 equiv of NaIO₄ for 30 min at 4° in the dark and subsequently with 2 equiv of dimedone in 15mm Teorell-Stenhagen buffer, either at pH 4 9 or 6 9 or 8 8, for 12 h at 4° Analyses were carried out as described above

Ester cleavage with alkaline phosphatase — A reaction mixture (50 μ l) of 0.5 μ mol of 2 [R = (HO)₂PO] and 1 μ mol of dimedone were incubated with 10 μ l of alkaline phosphatase solution (= 1 μ g of enzyme) at pH 8.8 and 37° for 40 min. The reaction products were worked up and analyzed as described above

NOTE 369

REFERENCES

- 1 F Hansske, M Sprinzl, and F Cramer, Bioorg Chem, 3 (1974) 367. 2 D G GLITZ and D S Sigman, Biochemistry, 9 (1970) 3433
- 3 M L WOLFROM AND J M BOBBITT, J Amer Chem Soc , 78 (1956) 2489